Fantastic post; I particularly liked the ball/stick analogy and the real-world examples.
Frankly, the drivetrain of supercars isn't what I pinpoint as their "super" characteristic solely for its placement of mass, but instead the reduced frontal area made possible by relocating the engine. Reduced frontal area allows for a lower coefficient of drag and that lower coefficient of drag drastically increases the possible vmax with the given powertrain. Add in the typically spectacular nature of said powertrain and you've got the makings of a supercar.
Thanks.
Just wanted to clarify a few things about drag though...
A mid-engine design doesn't actually inherently reduce a car's frontal area. There's no reason why a front-engine car would have to have greater frontal area than a mid-engine car. An AW10 MR2, for example, has more frontal area than a CRX-Si.
People have a misconception that "frontal area" only refers to the leading edge of the very front of a car, but that's not true. For example, on an F1 car the rear wing (and rear tires) contribute to the car's overall frontal area. Imagine someone taking a life-size photograph of a car from perfectly, dead-on straight ahead, cutting out the car from the photo, and sticking that cut-out onto an identically sized bit of cardboard (like those cardboard cut-out movie star things they have at movie theaters sometimes). The total area of that piece of cardboard is the car's frontal area. It includes the windshield, wing mirrors, fender flares, etc.
Also, frontal area does not change a car's drag coefficient. An object's
total drag is a product of its drag coefficient multiplied by the frontal area. A drag coefficient only tells you about the relative efficiency of a shape, not the total drag. For example, a Dodge Durango (SUV) and a Ford Fusion both have the same drag
coefficient (0.33) but the Fusion still has less
total drag due to a smaller frontal area.
An interesting note is that the drag coefficient remains constant as a shape is scaled up or down. If you shrunk a car down to HotWheels size, it would still have the exact same drag coefficient as its "life size" equivalent. However, total drag would be much less because the HotWheels size car would have maybe one square inch of frontal area while the "life size" car would have several square feet (1 square foot = 144 square inches) of frontal area.
The biggest benefit of the mid-engine design is the centralization of mass; by making the car "twitchier" it makes it faster in the hands of a professional and can help with keeping good steering feel. This sacrifices some safety at the limit but the reality is that street cars are never driven at the limit (OK, technically some are, I'm sure, but those instances usually show up on the news as high-speed car chases). Even people doing crazy things on the street like the Cannonball Run or the guy who set the cross-country speed record weren't running at the limits of the car.