From Wikipedia
Supercharging versus turbocharging
Positive-displacement superchargers may absorb as much as a third of the total crankshaft power of the engine, and, in many applications, are less efficient than turbochargers. In applications for which engine response and power are more important than any other consideration, such as top-fuel dragsters and vehicles used in tractor pulling competitions, positive-displacement superchargers are very common.
There are three main categories of superchargers for automotive use:
* Centrifugal turbochargers – driven from exhaust gases.
* Centrifugal superchargers – driven directly by the engine via a belt-drive.
* Positive displacement pumps – such as the Roots, Twin Screw(Lysholm), and TVS(Eaton) blowers.
The thermal efficiency, or fraction of the fuel/air energy that is converted to output power, is less with a mechanically-driven supercharger than with a turbocharger, because turbochargers are using energy from the exhaust gases that would normally be wasted. For this reason, both the economy and the power of a turbocharged engine are usually better than with superchargers. The main advantage of an engine with a mechanically-driven supercharger is better throttle response, as well as the ability to reach full-boost pressure instantaneously. With the latest turbocharging technology, throttle response on turbocharged cars is nearly as good as with mechanically-powered superchargers, but the existing lag time is still considered a major drawback, especially considering that the vast majority of mechanically-driven superchargers are now driven off clutched pulleys, much like an air compressor.
Turbochargers suffer (to a greater or lesser extent) from so-called turbo-spool (turbo lag; more correctly, boost lag), in which initial acceleration from low RPM is limited by the lack of sufficient exhaust gas mass flow (pressure). Once engine RPM is sufficient to start the turbine spinning, there is a rapid increase in power, as higher turbo boost causes more exhaust gas production, which spins the turbo yet faster, leading to a belated "surge" of acceleration. This makes the maintenance of smoothly-increasing RPM far harder with turbochargers than with engine-driven superchargers, which apply boost in direct proportion to the engine RPM.
Roots blowers tend to be 40–50% efficient at high boost levels. Centrifugal superchargers are 70–85% efficient. Lysholm-style blowers can be nearly as efficient as their centrifugal counterparts over a narrow range of load/speed/boost, for which the system must be specifically designed.
Keeping the air that enters the engine cool is an important part of the design of both superchargers and turbochargers. Compressing air increases its temperature, so it is common to use a small radiator called an intercooler between the pump and the engine to reduce the temperature of the air.
In the 1985 and 1986 World Rally Championships, Lancia ran the Delta S4 which incorporated both a belt driven supercharger and exhaust driven turbocharger. The design used a complex series of bypass valves in the induction and exhaust systems, and an electromagnetic clutch so that at low engine speeds boost was derived from the supercharger, in the middle of the rev range boost was derived from both systems, whilst at the highest revs the system disconnected drive from the supercharger and isolated the associated ducting.[7] This was done in an attempt to exploit the advantages of each of the charging systems whilst removing the disadvantages. In turn this approach brought greater complexity and impacted on the cars reliability in WRC events, whilst also increasing the weight of engine anciliaries in the finished design.